10

1.5.

1.6.

1.7.

1.8.

1.9.

1. Introduction

Calculate the maximum change in wavelength experienced by a pho-
ton in a Compton collision with an electron initially at rest. The initial
wavelength of the photonis A = 2x 10~ 12 m. What is the kinetic energy
of the recoil electron?

Write the equations for energy and momentum conservation in the
Compton scattering process when the electron is not at rest before the
collision.

Use the answer to problem 1.6 to calculate the maximum change of

energy and wavelength of a photon of red light (A = 8 x 1077 m) col- -

liding head on with an electron of energy Ee = 20 GeV. (Collisions of
photons from a laser with electrons from the Stanford linear accelerator
are in fact used to prepare monochromatic high-energy photon beams.)

Electron microscopes are chosen for very fine resolution because the
de Broglie wavelength A = h/p can be made much shorter than the
wavelength of visible light. The resolution is roughly A. Use the rela-
tivistic relation E2 = pZc?2 4+ m?c* to determine the energy of electrons
needed to resolve objects of the size 1070 m (a virus), 10~ m (a DNA
molecule), and 107 m(a proton). Determine the voltage U needed to
accelerate the electrons to the necessary kinetic energy £ — mc?.
What are the de Broglie frequency and wavelength of an electron mov-
ing with a kinetic energy of 20keV, which is typical for electrons in the
cathode-ray tube of a color television set?

2. Light Waves, Photons

2.1 Harmonic Plane Waves, Phase Velocity

Many important aspects and phenomena of quantum mechanics can be visu-
alized by means of wave mechanics, which was set up in close analogy to
wave optics. Here the simplest building block is the harmonic plane wave of
light in a vacuum describing a particularly simple configuration in space and
time of the electric field E and the magnetic induction field B. If the x axis
of a rectangular coordinate system has been oriented parallel to the direction
of the wave propagation, the y axis can always be chosen to be parallel to
the electric field strength so that the z axis is parallel to the magnetic field
strength. With this choice the field strengths can be written as

E, = Epcos(wt —kx) , B, = Bocos(wt —kx) ,
E, = E, =0 , By = B,=0

They are shown in Figures 2.1 and 2.2. The quantities Eo and Bg are the
maximum values reached by the electric and magnetic fields, respectively.
They are called amplitudes. The angular frequency  is connected to the wave
number k by the simple relation

w=ck

The points where the field strength is maximum, that is, has the value Ey,
are given by the phase of the cosine function

d=wt —kx =2Un |

where £ takes the integer values £ = 0, 1, £2, ... . Therefore such a point
moves with the velocity

_ X _ w

Tk

Since this velocity describes the speed of a point with a given phase, ¢ is
called the phase velocity of the wave. For light waves in a vacuum, it is inde-
pendent of the wavelength. For positive, or negative, k the propagation is in
the direction of the positive, or negative, x axis, respectively.

11



12 2. Light Waves, Photons

Fig.2.1. In a plane wave the electric and magnetic field strengths are perpendicular
to the direction of propagation. At any moment in time, the fields are constant within
planes perpendicular to the direction of motion. As time advances, these planes move
with constant velocity.

At a fixed point in space, the field strengths E and B oscillate in time with
the angular frequency w (Figures 2.3a and c). The period of the oscillation is
2

T
w

For fixed time the field strengths exhibit a periodic pattern in space with a
spatial period, the wavelength

2
A= —
k|

The whole pattern moves with velocity ¢ along the x direction. Fig-
ures 2.3b and 2.3d present the propagation of waves by a set of curves show-
ing the field strength at a number of consecutive equidistant moments in time.
Earlier moments in time are drawn in the background of the picture, later ones
toward the foreground. We call such a representation a time development.

For our purpose it is sufficient to study only the electric field of a light
wave,

2.1 Harmonic Plane Waves, Phase Velocity 13

Fig. 2.2. For a given moment in time, the electric field strength E and the magnetic field
strength B are shown along a line parallel to the direction of motion of the harmonic
plane wave.

E, = E = Egcos(wt — kx — a)

We have included an additional phase o to allow for the fact that the maximum
of E need not be at x = 0 for ¢+ = 0. To simplify many calculations, we now
make use of the fact that cosine and sine are equal to the real and imaginary
parts of an exponential,

cos B +isin B =ef |

that is, . _
cos B =Ree? | sin B = Ime'?

The wave is then written as
E=ReE; ,
where E. is the complex field strength:
E.=E, e—i(wt—kx—a) = Ep eiae—iwteikx
It factors into a complex amplitude
A= Ege®

and two exponentials containing the time and space dependences, respec-
tively. As mentioned earlier, the wave travels in the positive or negative x
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Fig.2.3. (a) Time
dependence  of
the electric field
of a harmonic
wave at a fixed
point in space.
(b) Time develop-
ment of the elec-
tric field of a har-
monic wave. The
field distribution
along the x di-
rection is shown
for several mo-
ments in time.
Early moments
are in the back-
ground, later mo-
ments in the fore-
ground. (¢, d)
Here the wave
has twice the fre-
quency. We ob-
serve that the pe-
riod T and the
wavelength A are
halved, but that
the phase veloc-
ity ¢ stays the
same. The time
developments in
parts b and d
are drawn for the
same interval of
time.

Elxg,t)

2.2 Light Wave Incident on a Glass Surface 15

direction, depending on the sign of k. Such waves with different amplitudes
are

Ecy = A e—iwteikx , E._ =B e—iwte—-ikx
The factorization into a time- and a space-dependent factor is particularly
convenient in solving Maxwell’s equations. It allows the separation of time
and space coordinates in these equations. If we divide by exp(—iwt), we arrive
at the time-independent expressions

Es+ — Aelkx , ES— — B e-lkx ,

which we call stationary waves.
The energy density in an electromagnetic wave is equal to a constant, &o,

times the square of the field strength,
w(x,t) =&kFE 2

Because the plane wave has a cosine structure, the energy density varies twice
as fast as the field strength. It remains always a positive quantity; therefore
the variation occurs around a nonzero average value. This average taken over
a period T of the wave can be written in terms of the complex field strength

as
€0 €0 2

Here E stands for the complex conjugate,
E!=ReE.—ilmE; ,

of the complex field strength,
E.=ReE.+iImE;

For the average energy density in the plane wave, we obtain

€0, ,2 €0 .2
= —|Al* = —E,
w 2|| 5 =0

2.2 Light Wave Incident on a Glass Surface

The effect of glass on light is to reduce the phase velocity by a factor n called
the refractive index,

Although the frequency w stays constant, wave number and wavelength are
changed according to

A
K =nk , A==
n
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The Maxwell equations, which govern all electromagnetic phenomena,
demand the continuity of the electric field strength and its first derivative at
the boundaries of the regions with different refractive indices. We consider
a wave traveling in the x direction and encountering at position x = x; the
surface of a glass block filling half of space (Figure 2.4a). The surface is
oriented perpendicular to the direction of the light. The complex expression

EH— = A elklx

describes the incident stationary wave to the left of the glass surface, that is,
for x < x;, where A1 is the known amplitude of the incident light wave. At
the surface only a part of the light wave enters the glass block; the other part
will be reflected. Thus, in the region to the left of the glass block, x < x), we
find in addition to the incident wave the reflected stationary wave

Ei. = B e—iklx
propagating in the opposite direction. Within the glass the transmitted wave
Ey = Ay el
propagates with the wave number
ko = naky

altered by the refractive index n = ny of the glass. The waves E4., E{_,and
E, are called incoming, reflected, and transmitted constituent waves, respec-
tively. The continuity for the field strength E and its derivative E "atx = x1
means that

Ei(x1) = Ex4(x1) + E1-(x1) = Ea(x1)

and
E{(x1) = iki [E14(x1) — Ei—(x)] = ikaE2(x1) = Ej(x1)

The two unknown amplitudes, B; of the reflected wave, and A> of the
transmitted, can now be calculated from these two continuity equations. The
electric field in the whole space is determined by two expressions incorporat-
ing these amplitudes,

E = Ayefi* 4+ By e kX forx < xq
ST Apelkr for x > xi

The electric field in the whole space is obtained as a superposition of constit-
uent waves physically existing in regions 1 and 2. By multiplication with the
time-dependent phase exp(—iwr), we obtain the complex field strength E,
the real part of which is the physical electric field strength.

2.2 Light Wave Incident on a Glass Surface 17

-

Fig.24. (a) To
the right of the
plane x = x|, a
glass block ex-
tends with refrac-
tive index n = ny;
to the left there
is empty space,
n = 1. (b) Time
development  of
the electric field
strength of a har-
monic wave which
falls from the left
onto a glass sur-
face, represented
by the vertical
line, and is partly
reflected by and
partly transmit-
ted into the glass.
(¢) Time devel-
opment of the
incoming wave
alone. (d) Time
development  of
the reflected wave
alone.
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Figure 2.4b gives the time development of this electric field strength. It is
easy to see that in the glass there is a harmonic wave moving to the right. The
picture in front of the glass is less clear. Figures 2.4c and d therefore show
separately the time developments of the incoming and the reflected waves
which add up to the total wave to the left of x;, observed in Figure 2.4b.

2.3 Light Wave Traveling through a Glass Plate

It is now easy to see what happens when light falls on a glass plate of finite
thickness. When the light wave penetrates the front surface at x = x1, again
reflection occurs so that we have as before the superposition of two stationary
waves in the region x < x1:

El - Aleiklx + Bl e—iklx

The wave moving within the glass plate suffers reflection at the rear surface at
X = x7, so that the second region, x| < x < x2, also contains a superposition
of two waves,

E2 — A2 eikzx + 82 e—ikz):

which now have the refracted wave number
k2 = n2k1

Only in the third region, x» < x, do we observe a single stationary wave
E3 = A3 eiklx

with the original wave number k.

As a consequence of the reflection on both the front and the rear surface
of the glass plate, the reflected wave in region 1 consists of two parts which
interfere with each other. The most prominent phenomenon observed under
appropriate circumstances is the destructive interference between these two
reflected waves, so that no reflection remains in region 1. The light wave is
completely transmitted into region 3. This phenomenon is called a resonance
of transmission. Tt can be illustrated by looking at the frequency dependence
of the stationary waves. The upper plot of Figure 2.5 shows the stationary
waves for different fixed values of the angular frequency w, with its magnitude
rising from the background to the foreground. A resonance of transmission is
recognized through a maximum in the amplitude of the transmitted wave, that
is, in the wave to the right of the glass plate.

The signature of a resonance becomes even more prominent in the fre-
quency dependence of the average energy density in the wave. As discussed
in Section 2.1, in a vacuum the average energy density has the form

2
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Fig.2.5. Top: Frequency dependence of stationary waves when a harmonic wave is
incident from the left on a glass plate. The two vertical lines indicate the thickness of
the plate. Small values of the angular frequency w are given in the background, large
values in the foreground of the picture. Bottom: Frequency dependence of the quantity
E.E? (which except for a factor n; is proportional to the average energy density) of a
harmonic wave incident from the left on a glass plate. The parameters are the same as in
part a. At a resonance of transmission, the average energy density is constant in the left
region, indicating through the absence of interference wiggles that there is no reflection.
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&0

In glass, where the refractive index » has to be taken into account, we have

g€ &
w = TOECE: = nz—ZQECE: :
where & = n? is the dielectric constant of glass. Thus, although E. is continu-
ous at the glass surface, w is not. It reflects the discontinuity of 2. Therefore
we prefer plotting the continuous quantity

2 ES
%w = E.E;
This plot, shown in the lower plot of Figure 2.5, indicates a resonance of
transmission by the maximum in the average energy density of the transmitted
wave. Moreover, since there is no reflected wave at the resonance of transmis-
sion, the energy density is constant in region 1.
In the glass plate we observe the typical pattern of a resonance.

(i) The amplitude of the average energy density is maximum.

(i) The energy density vanishes in a number of places called nodes because
for a resonance a multiple of half a wavelength fits into the glass plate.
Therefore different resonances can be distinguished by the number of
nodes.

The ratio of the amplitudes of the transmitted and incident waves is called the
transmission coefficient of the glass plate,

A
T=22
Ay

2.4 Free Wave Packet

The plane wave extends into all space, in contrast to any realistic physical sit-
uation in which the wave is localized in a finite domain of space. We therefore
introduce the concept of a wave packet. It can be understood as a superposi-
tion, that is, a sum of plane waves of different frequencies and amplitudes.
As a first step we concentrate the wave only in the x direction. It still extends
through all space in the y and the z direction. For simplicity we start with the
sum of two plane waves with equal amplitudes, Eg:

E =E{+ Ey = Egcos(wt — kix) + Egcos{wat — kpx)

2.4 Free Wave Packet 21
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Re E, = I(Re E,), to= o1

Fig. 2.6. Superposition of two harmonic waves of slightly different angular frequencies
w1 and w; at a fixed moment in time.

For a fixed time this sum represents a plane wave with two periodic structures.
The slowly varying structure is governed by a spatial period,

4
T =k
the rapidly varying structure by a wavelength,
4
" ka +

The resulting wave can be described as the product of a “carrier wave”
with the short wavelength A, and a factor modulating its amplitude with the
wavelength A _:

Ay

E =2Ejcos(w_t — k_x) cos(wyt — kyx)

2

ki = lkp :ki|/2 w+ = cky

Figure 2.6 plots for a fixed moment in time the two waves E| and E,, and
the resulting wave E. Obviously, the field strength is now concentrated for
the most part in certain regions of space. These regions of great field strength
propagate through space with the velocity
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Ax w_
—_— = — =
At k_

Now we again use complex field strengths. The superposition is written as
EC — EO e—i(wlt—klx) + EO e—i(wzt—kzx)

For the sake of simplicity, we have chosen in this example a superposition
of two harmonic waves with equal amplitudes. By constructing a more com-
plicated “sum” of plane waves, we can concentrate the field in a single region
of space. To this end we superimpose a continuum of waves with different
frequencies w = ck and amplitudes:

+00

E.(x,t)= Eof dkf(k)e—i((ut—kx)

-0

Such a configuration is called a wave packet. The spectral function f (k)
specifies the amplitude of the harmonic wave with wave number & and circular
frequency w = ck. We now consider a particularly simple spectral function
which is significantly different from zero in the neighborhood of the wave
number kg. We choose the Gaussian function

1 (k — ko)?
k = —_—_
AL «/Z?ak exp|: 2(rk2 ]

It describes a bell-shaped spectral function which has its maximum value
at k = ko, we assume the value of kg to be positive, kg > 0. The width of
the region in which the function f (k) is different from zero is characterized
by the parameter oy. In short, one speaks of a Gaussian with width oy. The
Gaussian function f (k) is shown in Figure 2.7a. The factors in front of the
exponential are chosen so that the area under the curve equals one. We illus-
trate the construction of a wave packet by replacing the integration over k by
a sum over a finite number of terms,

N
Ecx,) = ) E.(x,0) ,

n=-—N
E,(x,t) = EgAkf(ky)e (@nt—kn®)

where
kn = k() —+ nAk B Wy = Ckn

In Figure 2.7b the different terms of this sum are shown for time 7 = 0,
together with their sum, which is depicted in the foreground. The term with
the lowest wave number, that is, the longest wavelength, is in the background
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of the picture. The variation in the amplitudes of the different terms reflects
the Gaussian form of the spectral function f(k), which has its maximum, for
k = kg, at the center of the picture. On the different terms, the partial waves,
the point x = 0 is marked by a circle. We observe that the sum over all terms
is concentrated around a rather small region near x = 0.

Figure 2.7c shows the same wave packet, similarly made up of its partial
waves, for later time #; > 0. The wave packet as well as all partial waves have
moved to the right by the distance ct;. The partial waves still carry marks at
the phases that were at x = 0 at time # = 0. The picture makes it clear that all
partial waves have the same velocity as the wave packet, which maintains the
same shape for all moments in time.

If we perform the integral explicitly, the wave packet takes the simple
form

E.(x,t) = E.(ct —x)

2
= Epexp I:—%‘(ct — x)2:| exp [—i(wot — kox)]

that is,

2
o]
E(x,t) =Re E. = Egexp |:—7k(ct - x)2:| cos(wot — kox)

It represents a plane wave propagating in the positive x direction, with a field
strength concentrated in a region of the spatial extension 1/0} around point
x = ct. The time development of the field strength is shown in Figure 2.8b.
Obviously, the maximum of the field strength is located at x = ct; thus the
wave packet moves with the velocity ¢ of light. We call this configuration a
Gaussian wave packet of spatial width

1
Ax = —
Ok
and of wave-number width
Ak = oy

We observe that a spatial concentration of the wave in the region Ax nec-
essarily requires a spectrum of different wave numbers in the interval Ak so
that

AxAk =1

This is tantamount to saying that the sharper the localization of the wave
packet in x space, the wider is its spectrum in & space. The original harmonic
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wave E = Egcos(wt — kx) was perfectly sharp in k space (Ak = 0) and
therefore not localized in x space. The time development of the average en-
ergy density w shown in Figure 2.8c appears even simpler than that of the field
strength. It is merely a Gaussian traveling with the velocity of light along the
x direction. The Gaussian form is easily explained if we remember that

&0 [0} 2 —o2(ct—x)?
= EECE: = EEOe o (et—x)

We demonstrate the influence of the spectral function on the wave packet
by showing in Figure 2.8 spectral functions with two different widths o. For
both we show the time development of the field strength and of the average
energy density.

2.5 Wave Packet Incident on a Glass Surface

The wave packet, like the plane waves of which it is composed, undergoes
reflection and transmission at the glass surface. The upper plot of Figure 2.9
shows the time development of the average energy density in a wave packet
moving in from the left. As soon as it hits the glass surface, the already reflec-
ted part interferes with the incident wave packet, causing the wiggly structure
at the top of the packet. Part of the packet enters the glass, moving with a
velocity reduced by the refractive index. For this reason it is compressed in
space. The remainder is reflected and moves to the left as a regularly shaped
wave packet as soon as it has left the region in front of the glass where inter-
ference with the incident packet occurs.

We now demonstrate that the wiggly structure in the interference region
is caused by the fast spatial variation of the carrier wave characterized by
its wavelength. To this end let us examine the time development of the field
strength in the packet, shown in the lower plot of Figure 2.9. Indeed, the spa-
tial variation of the field strength has twice the wavelength of the average
energy density in the interference region.

Another way of studying the reflection and transmission of the packet is
to look separately at the average energy densities of the constituent waves,

Fig. 2.7. (a) Gaussian spectral function describing the amplitudes of harmonic waves of
different wave numbers . (b) Construction of a light wave packet as a sum of harmonic
waves of different wavelengths and amplitudes. For time : = O the different terms of
the sum are plotted, starting with the contribution of the longest wavelength in the
background. Points x = 0 are indicated as circles on the partial waves. The resulting
wave packet is shown in the foreground. (c) The same as part b, but for time ¢; > 0. The
phases that were at x = 0 for + = 0 have moved to x; = cr; for all partial waves. The
wave packet has consequently moved by the same distance and retained its shape.
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fk) f (k)

Fig.2.8. (a, d) Spectral functions, (b, ¢) time developments of the field strength, and
(c, f) time developments of the average energy density for two different Gaussian wave
packets.

namely the incoming, transmitted, and reflected waves. We show these con-
stituent waves in both regions 1, a vacuum, and 2, the glass, although they
contribute physically only in either the one or the other. Figure 2.10 gives
their time developments. All three have a smooth bell-shaped form and no
wiggles, even in the interference region. The time developments of the field
strengths of the constituent waves are shown in Figure 2.11. The observed av-
erage energy density of Figure 2.9 corresponds to the absolute square of the
sum of the incoming and reflected field strengths in the region in front of the
glass and, of course, not to the sum of the average energy densities of these
two constituent fields. Their interference pattern shows half the wavelength
of the carrier waves.

2.5 Wave Packet Incident on a Glass Surface 27

Fig. 2.9. Time developments of the quantity E.E} (which except for a factor n? is pro-
portional to the average energy density) and of the field strength in a wave packet of light
falling onto a glass surface where it is partly reflected and partly transmitted through
the surface. The glass surface is indicated by the vertical line.
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Fig.2.10. Time
developments of
the quantity
E.E}  (which
except for a
factor n? s
proportional to
the average en-
ergy  density)
of the constit-
uent waves in
a wave packet
of light inci-
dent on a glass
surface: (a) in-
coming wave,
(b) transmitted
wave, and (c)
reflected wave.
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/J\/Vv/ in a wave packet
of light incident
) /J\/V\/\/ on a glass sur-

strengths of the
constituent waves

face: (a) incoming
wave, (b) trans-
mitted wave, and
(¢) reflected wave.
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Fig.2.12. Time development of the quantity E.E} (which except for a factor n? is
proportional to the average energy density) in a wave packet of light incident on a glass
plate.

2.6 Wave Packet Traveling through a Glass Plate

Let us study a wave packet that is relatively narrow in space, that is, one
containing a wide range of frequencies. The time development of its average
energy density (Figure 2.12) shows that, as expected, at the front surface of
the glass plate part of the packet is reflected. Another part enters the plate,
where it is compressed and travels with reduced speed. At the rear surface this
packet is again partly reflected while another part leaves the plate, traveling to
the right with the original width and speed. The small packet traveling back
and forth in the glass suffers multiple reflections on the glass surfaces, each
time losing part of its energy to packets leaving the glass.

2.7 The Photon

As we have seen in Chapter 1, there are quanta of electromagnetic energy
called photons. They can be described by normalized wave packets of the
mean angular frequency wo and total energy fiwo. A finite energy content can
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be attributed only to wave packets confined in all three dimensions. As the
photoeffect indicates, a photon acts as a particle at a single location. Therefore
a single photon cannot be understood as an object filling the space occupied
by the wave packet. Nor can the wave representing the wave packet be inter-
preted as describing the electric field strength point by point. The same holds
for the average energy density. Instead, one has to introduce the probability
interpretation of quantum mechanics.
In Section 2.4 the spectral function

fk) =

1 o (k — ko)?
V2r oy P 20,(2

was introduced as the weight function specifying the amplitude of the har-
monic wave with wave number & and angular frequency w = c|k|. For the
description of a single photon, | f(k)|? has to be interpreted as a measure for
the probability density P(k) of the wave number of the photon. More explic-
itly, a wave packet with spectral function f (k) and total energy Awp, with
wo = clkg|, describes a photon. The probability interpretation of the spectral
function states the following. For a given small interval, k — %Ak, k+ %Ak,
located symmetrically about wave number k, the product | f (k)|? Ak is propor-
tional to the probability P(k)Ak that the photon has a wave number within
this interval. Since the probability that the photon possesses an arbitrary wave
number equals one, the proportionality constant N is determined by the re-
quirement

+00
N/ IFOPPdk=1

which yields
N =270y
Thus
P(k) Ak = 2/mor| f (k)12 Ak

is the probability of finding the photon in the wave number interval k — %Ak,
k + 1Ak, and

P(k) = 2v/mox| f (k)
is the probability density.

Conversely, a wave packet containing an energy much larger than Awg —
for example, a wave packet produced by a radio transmitter which was
switched on for a short time — contains a very large number of photons with a
fixed phase relation. When there are many coherent photons, the wave repre-
sents an electromagnetic field strength.

As an example, let us apply the probability interpretation to the wave
packet incident on a glass surface; assuming that the wave packet contains



32 2. Light Waves, Photons

the energy Awy, that is, only one quantum of light. The integral over the prob-
ability density corresponding to a single reflected or transmitted wave packet
is the probability that the incident photon will be reflected or transmitted.
More generally, the fraction of the energy contained in a single wave packet
is a measure indicating whether the photon is in the region of space inhabited
by the packet.

The Planck—Einstein relation between energy E of the photon and its an-
gular frequency

E =how

necessitates a relation between the wave vector k of the photon and its mo-
mentum p, the Compton relation

p=1rk

This is so since the energy and the momentum of a particle moving with the
velocity of light are related by

E = c|p|

The complex field strength E. of a plane light wave of angular frequency @
and wave vector k can now be expressed in terms of energy E and momentum
p of the photon:

E, = Epexp[—i(wf — K- X)] = Egexp [—%(Et —p. x)]

Problems

2.1. Estimate the refractive index n of the glass plate in Figure 2.4b.

2.2. Calculate the energy density for the plane electromagnetic wave de-
scribed by the complex electric field strength

Ec — EO e—i(wt—kx)
and show that its average over a temporal period T is w = (e0/2)EE}.
2.3. Give the qualitative reason why the resonance phenomena in Figure 2.5

(top) occurs for the wavelengths

d
a=0"0 . e=1,2,3...
2
Use the continuity condition of the electric field strength and its deriva-

tive. Here n is the refractive index of the glass plate of thickness d.
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Calculate the ratio of the frequencies of the two electric field strengths,
as they are plotted in Figure 2.6, from the beat in their superposition.

The one-dimensional wave packet of light does not show any disper-
sion, that is, spreading with time. What causes the dispersion of a wave
packet of light confined in all three spatial dimensions?

Estimate the refractive index of the glass, using the change in width or
velocity of the light pulse in Figure 2.9 (top).

Verify in Figure 2.12 that the stepwise reduction of the amplitude of
the pulse within the glass plate proceeds with approximately the same
reduction factor, thus following on the average an exponential decay
law.

Calculate energy E and momentum p of a photon of blue (A = 450 x
10~ m), green (A = 530 x 10~ m), yellow (A = 580 x 10~° m), and
red (A = 700 x 10~ m) light. Use Einstein’s formula E = Mc? to
calculate the relativistic mass of the photon. Give the results in SI units.



Fig. 2.1. In a plane wave the
electric and magnetic field
strengths are perpendicular
to the direction of propaga-
tion. At any moment in time,
the fields are constant within
planes perpendicular to the
direction of motion. As time
advances, these planes move
with constant velocity.

From The Picture Book of Quantum Mechanics, S. Brandt and H.D. Dahmen, 3td ed., © 2001 by Springer-Verlag New York.



Fig. 2.2. For a given mo-
ment in time, the electric
field strength E and the mag-
netic field strength B are
shown along a line parallel to
the direction of motion of the

harmonic plane wave.

From The Picture Book of Quantum Mechanics, S. Brandt and H.D. Dahmen, 3Td ed., © 2001 by Springer-Verlag New York.



a | E(xyt)

b
Elx,t)
o
€1 Bt
R JANVANVAN
v < VU
d
E(x,t)
\

Fig. 2.3. (a) Time dependence of the elec-
tric field of a harmonic wave at a fixed
point in space. (b) Time development of
the electric field of a harmonic wave. The
field distribution along the z direction is
shown for several moments in time. Early
moments are in the background, later mo-
ments in the foreground. (c, d) Here the
wave has twice the frequency. We observe
that the period 7' and the wavelength )\ are
halved, but that the phase velocity c stays
the same. The time developments in parts
b and d are drawn for the same interval of
time.
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Fig. 2.4. (a) To the right of the plane
r = x1, a glass block extends with refrac-
tive index n = ns; to the left there is empty
space, n = 1. (b) Time development of the
electric field strength of a harmonic wave
which falls from the left onto a glass sur-
face, represented by the vertical line, and
is partly reflected by and partly transmit-
ted into the glass. (c) Time development
of the incoming wave alone. (d) Time de-
velopment of the reflected wave alone.
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Fig. 2.5. Top: Frequency de-
pendence of stationary waves
when a harmonic wave is in-
cident from the left on a glass
plate. The two vertical lines
indicate the thickness of the
plate. Small values of the an-
gular frequency w are given
in the background, large val-
ues in the foreground of the
picture. Bottom: Frequency
dependence of the quantity
E.E* (which except for a fac-
tor ny, is proportional to the
average energy density) of a
harmonic wave incident from
the left on a glass plate. The
parameters are the same as
in part a. At a resonance
of transmission, the average
energy density is constant
in the left region, indicating
through the absence of inter-
ference wiggles that there is
no reflection.
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Fig. 2.6. Superposition of two harmonic waves of slightly different
angular frequencies w; and ws; at a fixed moment in time.
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Fig. 2.7. (a) Gaussian spectral function de-
scribing the amplitudes of harmonic waves
of different wave numbers k. (b) Construc-
tion of a light wave packet as a sum of har-
monic waves of different wavelengths and
amplitudes. For time ¢ = 0 the different
terms of the sum are plotted, starting with
the contribution of the longest wavelength
in the background. Points x = 0 are indi-
cated as circles on the partial waves. The
resulting wave packet is shown in the fore-
ground. (c) The same as part b, but for
time ¢; > 0. The phases that were at z =0
for t = 0 have moved to z; = ct; for all
partial waves. The wave packet has conse-
quently moved by the same distance and
retained its shape.
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Fig. 2.8. (a, d) Spectral functions, (b, €) time developments of the field strength, and (c, f)
time developments of the average energy density for two different Gaussian wave packets.
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Fig. 2.9. Time developments
of the quantity E.E* (which
except for a factor n? is pro-
portional to the average en-
ergy density) and of the field
strength in a wave packet of
light falling onto a glass sur-
face where it is partly re-
flected and partly transmit-
ted through the surface. The
glass surface is indicated by
the vertical line.
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Fig. 2.10. Time developments of the quan-
tity E.E: (which except for a factor n? is
proportional to the average energy den-
sity) of the constituent waves in a wave
packet of light incident on a glass surface:
(a) incoming wave, (b) transmitted wave,
and (c) reflected wave.
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Fig. 2.11. Time developments of the elec- o /ﬁ

tric field strengths of the constituent waves
in a wave packet of light incident on a glass
surface: (a) incoming wave, (b) transmit-
ted wave, and (c) reflected wave.
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Fig. 2.12. Time development of the quantity E.E* (which except for a factor n? is proportional
to the average energy density) in a wave packet of light incident on a glass plate.
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